Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 95(8)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33536172

RESUMO

The severe death toll caused by the recent outbreak of Ebola virus disease reinforces the importance of developing ebolavirus prevention and treatment strategies. Here, we have explored the immunogenicity of a novel immunization regimen priming with vesicular stomatitis virus particles bearing Sudan Ebola virus (SUDV) glycoprotein (GP) that consists of GP1 & GP2 subunits and boosting with soluble SUDV GP in macaques, which developed robust neutralizing antibody (nAb) responses following immunizations. Moreover, EB46, a protective nAb isolated from one of the immune macaques, is found to target the GP1/GP2 interface, with GP-binding mode and neutralization mechanism similar to a number of ebolavirus nAbs from human and mouse, indicating that the ebolavirus GP1/GP2 interface is a common immunological target in different species. Importantly, selected immune macaque polyclonal sera showed nAb specificity similar to EB46 at substantial titers, suggesting that the GP1/GP2 interface region is a viable target for ebolavirus vaccine.Importance: The elicitation of sustained neutralizing antibody (nAb) responses against diverse ebolavirus strains remains as a high priority for the vaccine field. The most clinically advanced rVSV-ZEBOV vaccine could elicit moderate nAb responses against only one ebolavirus strain, EBOV, among the five ebolavirus strains, which last less than 6 months. Boost immunization strategies are desirable to effectively recall the rVSV vector-primed nAb responses to prevent infections in prospective epidemics, while an in-depth understanding of the specificity of immunization-elicited nAb responses is essential for improving vaccine performance. Here, using non-human primate animal model, we demonstrated that booster immunization with a stabilized trimeric soluble form of recombinant glycoprotein derived from the ebolavirus Sudan strain following the priming rVSV vector immunization led to robust nAb responses that substantially map to the subunit interface of ebolavirus glycoprotein, a common B cell repertoire target of multiple species including primates and rodents.

2.
mBio ; 12(1)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436428

RESUMO

Ebola virus (EBOV) is responsible for numerous devastating outbreaks throughout Africa, including the 2013-2016 West African outbreak as well as the two recent outbreaks in the Democratic Republic of the Congo (DRC), one of which is ongoing. Although EBOV disease (EVD) has typically been considered a highly lethal acute infection, increasing evidence suggests that the virus can persist in certain immune-privileged sites and occasionally lead to EVD recrudescence. Little is understood about the processes that contribute to EBOV persistence and recrudescence, in part because of the rarity of these phenomena but also because of the absence of an animal model that recapitulates them. Here, we describe a case of EBOV persistence associated with atypical EVD in a nonhuman primate (NHP) following inoculation with EBOV and treatment with an experimental monoclonal antibody cocktail. Although this animal exhibited only mild signs of acute EVD, it developed severe disease 2 weeks later and succumbed shortly thereafter. Viremia was undetectable at the time of death, despite abundant levels of viral RNA in most tissues, each of which appeared to harbor a distinct viral quasispecies. Remarkably, sequence analysis identified a single mutation in glycoprotein (GP) that not only resisted antibody-mediated neutralization but also increased viral growth kinetics and virulence. Overall, this report represents the most thoroughly characterized case of atypical EVD in an NHP described thus far, and it provides valuable insight into factors that may contribute to EBOV persistence and recrudescent disease.IMPORTANCE Ebola virus remains a global threat to public health and biosecurity, yet we still know relatively little about its pathogenesis and the complications that arise following recovery. With nearly 20,000 survivors from the 2013-2016 West African outbreak, as well as over 1,000 survivors of the recent outbreak in the DRC, we must consider the consequences of virus persistence and recrudescent disease, even if they are rare. In this study, we describe a case of atypical Ebola virus disease in a nonhuman primate after treatment with a monoclonal antibody. Not only does this study underscore the potential for atypical disease presentations, but it also emphasizes the importance of considering how medical countermeasures might relate to these phenomena, especially as antibodies are incorporated into the standard of care. The results presented herein provide a foundation from which we can continue to investigate these facets of Ebola virus disease.


Assuntos
Anticorpos Monoclonais/imunologia , Ebolavirus/genética , Glicoproteínas/genética , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/virologia , Mutação , África , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes , Anticorpos Antivirais/imunologia , Citocinas , Surtos de Doenças , Feminino , Furões , Doença pelo Vírus Ebola/tratamento farmacológico , Masculino , Primatas , RNA Viral/isolamento & purificação
3.
J Mol Biol ; 431(21): 4354-4367, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30928493

RESUMO

To develop an antibody (Ab) therapeutic against staphylococcal enterotoxin B (SEB), a potential incapacitating bioterrorism agent and a major cause of food poisoning, we developed a "class T" anti-SEB neutralizing Ab (GC132) targeting an epitope on SEB distinct from that of previously developed "class M" Abs. A systematic engineering approach was applied to affinity-mature Ab GC132 to yield an optimized therapeutic candidate (GC132a) with sub-nanomolar binding affinity. Mapping of the binding interface by hydrogen-deuterium exchange coupled to mass spectrometry revealed that the class T epitope on SEB overlapped with the T-cell receptor binding site, whereas other evidence suggested that the class M epitope overlapped with the binding site for the major histocompatibility complex. In the IgG format, GC132a showed ∼50-fold more potent toxin-neutralizing efficacy than the best class M Ab in vitro, and fully protected mice from lethal challenge in a toxic shock post-exposure model. We also engineered bispecific Abs (bsAbs) that bound tetravalently by utilizing two class M binding sites and two class T binding sites. The bsAbs displayed enhanced toxin neutralization efficacy compared with the respective monospecific Ab subunits as well as a mixture of the two, indicating that enhanced efficacy was due to heterotypic tetravalent binding to two non-overlapping epitopes on SEB. Together, these results suggest that class T anti-SEB Ab GC132a is an excellent candidate for clinical development and for bsAb engineering.


Assuntos
Anticorpos Antibacterianos/metabolismo , Anticorpos Neutralizantes/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Anticorpos Biespecíficos/metabolismo , Técnicas de Visualização da Superfície Celular , Enterotoxinas/metabolismo , Humanos , Espectrometria de Massas , Modelos Biológicos , Engenharia de Proteínas/métodos
4.
Nat Struct Mol Biol ; 26(3): 204-212, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30833785

RESUMO

The structural features that govern broad-spectrum activity of broadly neutralizing anti-ebolavirus antibodies (Abs) outside of the internal fusion loop epitope are currently unknown. Here we describe the structure of a broadly neutralizing human monoclonal Ab (mAb), ADI-15946, which was identified in a human survivor of the 2013-2016 outbreak. The crystal structure of ADI-15946 in complex with cleaved Ebola virus glycoprotein (EBOV GPCL) reveals that binding of the mAb structurally mimics the conserved interaction between the EBOV GP core and its glycan cap ß17-ß18 loop to inhibit infection. Both endosomal proteolysis of EBOV GP and binding of mAb FVM09 displace this loop, thereby increasing exposure of ADI-15946's conserved epitope and enhancing neutralization. Our work also mapped the paratope of ADI-15946, thereby explaining reduced activity against Sudan virus, which enabled rational, structure-guided engineering to enhance binding and neutralization of Sudan virus while retaining the parental activity against EBOV and Bundibugyo virus.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Ebolavirus/imunologia , Proteínas Virais de Fusão/imunologia , Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos/imunologia , Cristalografia por Raios X , Humanos , Estrutura Terciária de Proteína , Sobreviventes
5.
Nat Commun ; 10(1): 105, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30631063

RESUMO

The 2013-2016 Ebola virus (EBOV) disease epidemic demonstrated the grave consequences of filovirus epidemics in the absence of effective therapeutics. Besides EBOV, two additional ebolaviruses, Sudan (SUDV) and Bundibugyo (BDBV) viruses, as well as multiple variants of Marburg virus (MARV), have also caused high fatality epidemics. Current experimental EBOV monoclonal antibodies (mAbs) are ineffective against SUDV, BDBV, or MARV. Here, we report that a cocktail of two broadly neutralizing ebolavirus mAbs, FVM04 and CA45, protects nonhuman primates (NHPs) against EBOV and SUDV infection when delivered four days post infection. This cocktail when supplemented by the anti-MARV mAb MR191 exhibited 100% efficacy in MARV-infected NHPs. These findings provide a solid foundation for clinical development of broadly protective immunotherapeutics for use in future filovirus epidemics.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Ebolavirus/imunologia , Infecções por Filoviridae/imunologia , Marburgvirus/imunologia , Doenças dos Primatas/imunologia , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Ebolavirus/classificação , Ebolavirus/efeitos dos fármacos , Ebolavirus/fisiologia , Infecções por Filoviridae/terapia , Infecções por Filoviridae/virologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Imunoterapia/métodos , Marburgvirus/efeitos dos fármacos , Marburgvirus/fisiologia , Doenças dos Primatas/terapia , Doenças dos Primatas/virologia , Primatas , Resultado do Tratamento
6.
Nat Commun ; 9(1): 3934, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30258051

RESUMO

The severity of the 2014-2016 ebolavirus outbreak in West Africa expedited clinical development of therapeutics and vaccines though the countermeasures on hand were largely monospecific and lacked efficacy against other ebolavirus species that previously emerged. Recent studies indicate that ebolavirus glycoprotein (GP) fusion loops are targets for cross-protective antibodies. Here we report the 3.72 Å resolution crystal structure of one such cross-protective antibody, CA45, bound to the ectodomain of Ebola virus (EBOV) GP. The CA45 epitope spans multiple faces of the fusion loop stem, across both GP1 and GP2 subunits, with ~68% of residues identical across > 99.5% of known ebolavirus isolates. Extensive antibody interactions within a pan-ebolavirus small-molecule inhibitor binding cavity on GP define this cavity as a novel site of immune vulnerability. The structure elucidates broad ebolavirus neutralization through a highly conserved epitope on GP and further enables rational design and development of broadly protective vaccines and therapeutics.


Assuntos
Anticorpos Neutralizantes/química , Ebolavirus/imunologia , Proteínas do Envelope Viral/imunologia , Sítios de Ligação de Anticorpos
7.
J Infect Dis ; 218(suppl_5): S553-S564, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29939318

RESUMO

Background: Several vaccine platforms have been successfully evaluated for prevention of Ebola virus (EBOV) disease (EVD) in nonhuman primates and humans. Despite remarkable efficacy by multiple vaccines, the immunological correlates of protection against EVD are incompletely understood. Methods: We systematically evaluated the antibody response to various EBOV proteins in 79 nonhuman primates vaccinated with various EBOV vaccine platforms. We evaluated the serum immunoglobulin (Ig)G titers against EBOV glycoprotein (GP), the ability of the vaccine-induced antibodies to bind GP at acidic pH or to displace ZMapp, and virus neutralization titers. The correlation of these outcomes with survival from EVD was evaluated by appropriate statistical methods. Results: Irrespective of the vaccine platform, protection from EVD strongly correlated with anti-GP IgG titers. The GP-directed antibody levels required for protection in animals vaccinated with virus-like particles (VLPs) lacking nucleoprotein (NP) was significantly higher than animals immunized with NP-containing VLPs or adenovirus-expressed GP, platforms that induce strong T-cell responses. Furthermore, protective immune responses correlated with anti-GP antibody binding strength at acidic pH, neutralization of GP-expressing pseudovirions, and the ability to displace ZMapp components from GP. Conclusions: These findings suggest key quantitative and qualitative attributes of antibody response to EVD vaccines as potential correlates of protection.


Assuntos
Anticorpos Antivirais/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Vacinação , Animais , Anticorpos Antivirais/sangue , Vacinas contra Ebola/imunologia , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/mortalidade , Concentração de Íons de Hidrogênio , Macaca fascicularis , Nucleoproteínas/imunologia , Vírion/imunologia
8.
J Infect Dis ; 218(suppl_5): S603-S611, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29955852

RESUMO

Background: Filoviruses including Ebola, Sudan, and other species are emerging zoonotic pathogens representing a significant public health concern with high outbreak potential, and they remain a potential bioterrorism-related threat. We have developed a despeciated equine Ebola polyclonal antibody (E-EIG) postexposure treatment against Ebola virus (EBOV) and evaluated its efficacy in the guinea pig model of EBOV infection. Methods: Guinea pigs were infected with guinea pig-adapted EBOV (Mayinga strain) and treated with various dose levels of E-EIG (20-100 mg/kg) twice daily for 6 days starting at 24 h postinfection. The E-EIG was also assessed for neutralization activity against related filoviruses including EBOV strains Mayinga, Kikwit, and Makona and the Bundibugyo and Taï Forest ebolavirus species. Results: Treatment with E-EIG conferred 83% to 100% protection in guinea pigs. The results demonstrated a comparable neutralization activity (range, 1:512-1:896) of E-EIG against all tested strains, suggesting the potential for cross-protection with the polyclonal antibody therapeutic. Conclusions: This study showed that equine-derived polyclonal antibodies are efficacious against lethal EBOV disease in a relevant animal model. Furthermore, the studies support the utility of the equine antibody platform for the rapid production of a therapeutic product in the event of an outbreak by a filovirus or other zoonotic pathogen.


Assuntos
Anticorpos Antivirais/imunologia , Ebolavirus/imunologia , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Animais , Proteção Cruzada , Reações Cruzadas , Feminino , Cobaias , Cavalos , Masculino
9.
Biochem Biophys Res Commun ; 502(2): 238-242, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-29800568

RESUMO

Effector peptides of innate immunity play an important role in host defense. They act directly by inactivating microbes but also link innate to adaptive immunity. A variety of innate immune functions has been described for these peptides, including chemoattraction and cytokine release. In this study, we describe the effect on cell morphology and cell adhesion of human defensins. We find that Human Defensin 5, the major product of specialized gut epithelial cells, causes changes in cell morphology. HD-5 induces cell adhesion, binds to fibronectin and facilitates binding of T cells to intestinal epithelial cells. These effects were found also for a second prominent defensing, termed Human Neutrophil peptide-1, but not for other human defensins.


Assuntos
Adesão Celular/fisiologia , Defensinas/fisiologia , Células CACO-2 , Adesão Celular/imunologia , Defensinas/imunologia , Células Epiteliais/imunologia , Células Epiteliais/fisiologia , Fibronectinas/metabolismo , Humanos , Imunidade Inata , Células Jurkat , Ligação Proteica , Ressonância de Plasmônio de Superfície , Linfócitos T/imunologia , Linfócitos T/fisiologia , alfa-Defensinas/fisiologia
10.
Cell ; 169(5): 891-904.e15, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28525756

RESUMO

While neutralizing antibodies are highly effective against ebolavirus infections, current experimental ebolavirus vaccines primarily elicit species-specific antibody responses. Here, we describe an immunization-elicited macaque antibody (CA45) that clamps the internal fusion loop with the N terminus of the ebolavirus glycoproteins (GPs) and potently neutralizes Ebola, Sudan, Bundibugyo, and Reston viruses. CA45, alone or in combination with an antibody that blocks receptor binding, provided full protection against all pathogenic ebolaviruses in mice, guinea pigs, and ferrets. Analysis of memory B cells from the immunized macaque suggests that elicitation of broadly neutralizing antibodies (bNAbs) for ebolaviruses is possible but difficult, potentially due to the rarity of bNAb clones and their precursors. Unexpectedly, germline-reverted CA45, while exhibiting negligible binding to full-length GP, bound a proteolytically remodeled GP with picomolar affinity, suggesting that engineered ebolavirus vaccines could trigger rare bNAb precursors more robustly. These findings have important implications for developing pan-ebolavirus vaccine and immunotherapeutic cocktails.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Vacinas contra Ebola/imunologia , Doença pelo Vírus Ebola/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Regiões Determinantes de Complementaridade , Reações Cruzadas , Ebolavirus/imunologia , Mapeamento de Epitopos , Epitopos de Linfócito B/imunologia , Feminino , Furões , Cobaias , Fragmentos Fab das Imunoglobulinas/ultraestrutura , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares
11.
Cell Rep ; 19(2): 413-424, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28402862

RESUMO

Drug combinations are synergistic when their combined efficacy exceeds the sum of the individual actions, but they rarely include ineffective drugs that become effective only in combination. We identified several "enabling pairs" of neutralizing and non-neutralizing anti-ebolavirus monoclonal antibodies, whose combination exhibited new functional profiles, including transforming a non-neutralizing antibody to a neutralizer. Sub-neutralizing concentrations of antibodies 2G4 or m8C4 enabled non-neutralizing antibody FVM09 (IC50 >1 µM) to exhibit potent neutralization (IC50 1-10 nM). While FVM09 or m8C4 alone failed to protect Ebola-virus-infected mice, a combination of the two antibodies provided 100% protection. Furthermore, non-neutralizers FVM09 and FVM02 exponentially enhanced the potency of two neutralizing antibodies against both Ebola and Sudan viruses. We identified a hotspot for the binding of these enabling antibody pairs near the interface of the glycan cap and GP2. Enabling cooperativity may be an underappreciated phenomenon for viruses, with implications for the design and development of immunotherapeutics and vaccines.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Sinergismo Farmacológico , Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/terapia , Doença pelo Vírus Ebola/virologia , Humanos , Camundongos
12.
Science ; 354(6310): 350-354, 2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27608667

RESUMO

There is an urgent need for monoclonal antibody (mAb) therapies that broadly protect against Ebola virus and other filoviruses. The conserved, essential interaction between the filovirus glycoprotein, GP, and its entry receptor Niemann-Pick C1 (NPC1) provides an attractive target for such mAbs but is shielded by multiple mechanisms, including physical sequestration in late endosomes. Here, we describe a bispecific-antibody strategy to target this interaction, in which mAbs specific for NPC1 or the GP receptor-binding site are coupled to a mAb against a conserved, surface-exposed GP epitope. Bispecific antibodies, but not parent mAbs, neutralized all known ebolaviruses by coopting viral particles themselves for endosomal delivery and conferred postexposure protection against multiple ebolaviruses in mice. Such "Trojan horse" bispecific antibodies have potential as broad antifilovirus immunotherapeutics.


Assuntos
Anticorpos Biespecíficos/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Proteínas de Transporte/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Glicoproteínas de Membrana/imunologia , Receptores Virais/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Monoclonais/imunologia , Sítios de Ligação/imunologia , Linhagem Celular Tumoral , Endossomos/virologia , Doença pelo Vírus Ebola/terapia , Humanos , Imunoterapia/métodos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos BALB C , Proteína C1 de Niemann-Pick , Internalização do Vírus
13.
Cell Rep ; 15(7): 1514-1526, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27160900

RESUMO

Previous efforts to identify cross-neutralizing antibodies to the receptor-binding site (RBS) of ebolavirus glycoproteins have been unsuccessful, largely because the RBS is occluded on the viral surface. We report a monoclonal antibody (FVM04) that targets a uniquely exposed epitope within the RBS; cross-neutralizes Ebola (EBOV), Sudan (SUDV), and, to a lesser extent, Bundibugyo viruses; and shows protection against EBOV and SUDV in mice and guinea pigs. The antibody cocktail ZMapp™ is remarkably effective against EBOV (Zaire) but does not cross-neutralize other ebolaviruses. By replacing one of the ZMapp™ components with FVM04, we retained the anti-EBOV efficacy while extending the breadth of protection to SUDV, thereby generating a cross-protective antibody cocktail. In addition, we report several mutations at the base of the ebolavirus glycoprotein that enhance the binding of FVM04 and other cross-reactive antibodies. These findings have important implications for pan-ebolavirus vaccine development and defining broadly protective antibody cocktails.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Ebolavirus/fisiologia , Epitopos/imunologia , Glicoproteínas/metabolismo , Doença pelo Vírus Ebola/imunologia , Receptores Virais/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/ultraestrutura , Anticorpos Neutralizantes , Anticorpos Antivirais/química , Sítios de Ligação , Modelos Animais de Doenças , Feminino , Glicoproteínas/química , Glicoproteínas/genética , Glicoproteínas/ultraestrutura , Cobaias , Células HEK293 , Humanos , Cinética , Camundongos Endogâmicos BALB C , Modelos Moleculares , Mutação/genética , Coloração Negativa , Testes de Neutralização , Resultado do Tratamento
14.
J Virol ; 90(1): 279-91, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26468532

RESUMO

UNLABELLED: Filoviruses cause highly lethal viral hemorrhagic fever in humans and nonhuman primates. Current immunotherapeutic options for filoviruses are mostly specific to Ebola virus (EBOV), although other members of Filoviridae such as Sudan virus (SUDV), Bundibugyo virus (BDBV), and Marburg virus (MARV) have also caused sizeable human outbreaks. Here we report a set of pan-ebolavirus and pan-filovirus monoclonal antibodies (MAbs) derived from cynomolgus macaques immunized repeatedly with a mixture of engineered glycoproteins (GPs) and virus-like particles (VLPs) for three different filovirus species. The antibodies recognize novel neutralizing and nonneutralizing epitopes on the filovirus glycoprotein, including conserved conformational epitopes within the core regions of the GP1 subunit and a novel linear epitope within the glycan cap. We further report the first filovirus antibody binding to a highly conserved epitope within the fusion loop of ebolavirus and marburgvirus species. One of the antibodies binding to the core GP1 region of all ebolavirus species and with lower affinity to MARV GP cross neutralized both SUDV and EBOV, the most divergent ebolavirus species. In a mouse model of EBOV infection, this antibody provided 100% protection when administered in two doses and partial, but significant, protection when given once at the peak of viremia 3 days postinfection. Furthermore, we describe novel cocktails of antibodies with enhanced protective efficacy compared to individual MAbs. In summary, the present work describes multiple novel, cross-reactive filovirus epitopes and innovative combination concepts that challenge the current therapeutic models. IMPORTANCE: Filoviruses are among the most deadly human pathogens. The 2014-2015 outbreak of Ebola virus disease (EVD) led to more than 27,000 cases and 11,000 fatalities. While there are five species of Ebolavirus and several strains of marburgvirus, the current immunotherapeutics primarily target Ebola virus. Since the nature of future outbreaks cannot be predicted, there is an urgent need for therapeutics with broad protective efficacy against multiple filoviruses. Here we describe a set of monoclonal antibodies cross-reactive with multiple filovirus species. These antibodies target novel conserved epitopes within the envelope glycoprotein and exhibit protective efficacy in mice. We further present novel concepts for combination of cross-reactive antibodies against multiple epitopes that show enhanced efficacy compared to monotherapy and provide complete protection in mice. These findings set the stage for further evaluation of these antibodies in nonhuman primates and development of effective pan-filovirus immunotherapeutics for use in future outbreaks.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Epitopos/imunologia , Filoviridae/imunologia , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Proteínas Virais/imunologia , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/isolamento & purificação , Anticorpos Antivirais/uso terapêutico , Reações Cruzadas , Modelos Animais de Doenças , Feminino , Imunização Passiva , Macaca , Camundongos Endogâmicos BALB C , Análise de Sobrevida , Resultado do Tratamento
15.
J Virol ; 90(1): 266-78, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26468533

RESUMO

UNLABELLED: The unprecedented 2014-2015 Ebola virus disease (EVD) outbreak in West Africa has highlighted the need for effective therapeutics against filoviruses. Monoclonal antibody (MAb) cocktails have shown great potential as EVD therapeutics; however, the existing protective MAbs are virus species specific. Here we report the development of pan-ebolavirus and pan-filovirus antibodies generated by repeated immunization of mice with filovirus glycoproteins engineered to drive the B cell responses toward conserved epitopes. Multiple pan-ebolavirus antibodies were identified that react to the Ebola, Sudan, Bundibugyo, and Reston viruses. A pan-filovirus antibody that was reactive to the receptor binding regions of all filovirus glycoproteins was also identified. Significant postexposure efficacy of several MAbs, including a novel antibody cocktail, was demonstrated. For the first time, we report cross-neutralization and in vivo protection against two highly divergent filovirus species, i.e., Ebola virus and Sudan virus, with a single antibody. Competition studies indicate that this antibody targets a previously unrecognized conserved neutralizing epitope that involves the glycan cap. Mechanistic studies indicated that, besides neutralization, innate immune cell effector functions may play a role in the antiviral activity of the antibodies. Our findings further suggest critical novel epitopes that can be utilized to design effective cocktails for broad protection against multiple filovirus species. IMPORTANCE: Filoviruses represent a major public health threat in Africa and an emerging global concern. Largely driven by the U.S. biodefense funding programs and reinforced by the 2014 outbreaks, current immunotherapeutics are primarily focused on a single filovirus species called Ebola virus (EBOV) (formerly Zaire Ebola virus). However, other filoviruses including Sudan, Bundibugyo, and Marburg viruses have caused human outbreaks with mortality rates as high as 90%. Thus, cross-protective immunotherapeutics are urgently needed. Here, we describe monoclonal antibodies with cross-reactivity to several filoviruses, including the first report of a cross-neutralizing antibody that exhibits protection against Ebola virus and Sudan virus in mice. Our results further describe a novel combination of antibodies with enhanced protective efficacy. These results form a basis for further development of effective immunotherapeutics against filoviruses for human use. Understanding the cross-protective epitopes are also important for rational design of pan-ebolavirus and pan-filovirus vaccines.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/isolamento & purificação , Filoviridae/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Imunização Passiva , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Antivirais/administração & dosagem , Proteção Cruzada , Modelos Animais de Doenças , Epitopos/imunologia , Feminino , Camundongos Endogâmicos BALB C , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...